Premium Phosphosite-Specific 7TM Antibodies
Novel Tools for Your GPCR Research
Select Your Country of Delivery below

Premium Phosphosite-Specific 7TM Antibodies

Phosphorylation of intracellular serine and threonine residues is the most important post translational modification of G protein-coupled receptors (GPCRs) also called heptahelical or seven transmembrane receptors (7TMR). After agonist exposure, these receptors acquire an active conformation, which is recognized by a family of highly specialized GPCR kinases (GRKs). Agonist-driven phosphorylation by GRKs regulates acute receptor desensitization, arrestin recruitment, internalization, post-activation signaling, long-term tolerance and drug addiction. Phosphosite-specific 7TM antibodies are designed to specifically detect agonist-activated GPCRs. In fact, recent work shows that ligand profiling using phosphosite-specific 7TM antibodies provides valuble information on ligand bias beyond that obtained with conventional ß-arrestin recruitment assays. Phosphosite-specific 7TM antibodies are novel tools for GPCR research that can be used to:

  • profile agonist properties of novel GPCR ligands
  • decipher the phosphorylation barcode of GPCRs
  • determine the spatial and temporal dynamics of receptor phosphorylation
  • identify relevant kinases and phosphatases for GPCR phosphorylation and dephosphoryation

Lifecycle3


Schematic representation of the G protein-coupled receptor phosphorylation / dephosphorylation cycle. GRK, G protein-coupled receptor kinase; PKC, protein kinase C; cPP1, catalytic subunit of protein phosphatase 1; R*, activated GPCR; CCP, clathrin-coated pit. 

Close filters
1 From 27
No results were found for the filter!
NEW
Validation of the G protein-coupled receptor 87 in transfected HEK293 cells.
GPR87 (non-phospho-G Protein-Coupled Receptor...
The GPR87 antibody is directed against the distal end of the carboxyl-terminal tail of mouse, rat and human GRP87. It can be used to detect total GPR87 receptors in Western blots independent of phosphorylation. The GPR87 antibody can...
$ 375.00 *
NEW
KO-Validated
 Western blot analysis of G Protein-coupled Receptor 20 in mouse tissues in vivo.
mGPR20 (non-phospho-G Protein-Coupled Receptor...
The GPR20 receptor antibody is directed against the distal end of the carboxyl-terminal tail of mouse GPR20. It can be used to detect total GPR20 receptors in Western blots independent of phosphorylation. The GPR20 antibody can also be...
$ 375.00 *
Citations
NEW
Agonist-induced Serine425 phosphorylation of the Cannabinoid Receptor 1
pS425-CB1 (phospho-Cannabinoid Receptor 1...
Serine425 (S425) is major phosphorylation site of the Cannabinoid Receptor 1 (CB1). The pS425-CB1 antibody detects phosphorylation in response to agonists. S425 phosphorylation is likely to be involved in efficient ligand sequestration...
$ 375.00 *
Citations
NEW
Immunohistochemical identification of Complement C5a Receptor 1 in human spleen.
C5a1 (IHC-grade), Complement C5a Receptor 1...
The C5a1 receptor antibody is directed against the distal end of the carboxyl-terminal tail of human Complement 5a Receptor 1. It can be used to detect total C5a1 receptors in Western blots independent of phosphorylation. The C5a1...
$ 375.00 *
NEW
Immunohistochemical identification of Atypical Chemokine Receptor 4 in human spleen.
ACKR4 (IHC-grade), Atypical Chemokine Receptor...
The ACKR4 receptor antibody is directed against the distal end of the carboxyl-terminal tail of human Atypical Chemokine Receptor 4. It can be used to detect total ACKR4 receptors in Western blots independent of phosphorylation. The...
$ 375.00 *
NEW
KO-Validated
Immunohistochemical identification of Complement C5a Receptor 1 in human spleen.
mC5a1 (IHC-grade), Complement C5a Receptor 1...
The mouse C5a1 receptor antibody is directed against the distal end of the carboxyl-terminal tail of mouse and rat C5a1. It can be used to detect total C5a1 receptors in Western blots independent of phosphorylation. The mouse C5a1...
$ 375.00 *
NEW
Immunohistochemical identification of G Protein-coupled Receptor 17 in oligodendrocytes.
GPR17 (IHC-grade), G Protein-Coupled Receptor...
The GPR17 antibody is directed against the distal end of the carboxyl-terminal tail of mouse, rat and human GRP17. It can be used to detect total GPR17 receptors in Western blots independent of phosphorylation. The GPR17 antibody can...
$ 375.00 *
Citations
NEW
Immunohistochemical identification of G Protein-coupled Receptor 84 in lymph node
GPR84 (IHC-grade), G Protein-Coupled Receptor...
The GPR84 antibody is directed against the distal end of the carboxyl-terminal tail of human GRP84. It can be used to detect total GPR84 receptors in Western blots independent of phosphorylation. The GPR84 antibody can also be used to...
$ 375.00 *
Citations
Immunohistochemical control of anti-NPS (Neuropeptide S) antibody in mouse coronal sections
NPS (IHC-grade), Neuropeptide S Antibody
The NPS antibody is directed against human Neuropeptide S. The NPS antibody can be used to detect Neuropeptide S in formalin-fixed, paraffin-embedded tissue sections by immunohistochemistry.
$ 350.00 *
Citations
Immunohistochemical identification of Nociceptin/Orphanin FQ in mouse dorsal horn
N/OFQ (IHC-grade), Nociceptin/Orphanin FQ Antibody
The N/OFQ receptor antibody is directed against human Nociceptin/Orphanin FQ. The N/OFQ antibody can be used to detect N/OFQ in formalin-fixed, paraffin-embedded tissue sections by immunohistochemistry.
$ 350.00 *
Citations
NEW
Immunohistochemical Identification of Agonist-induced Serine425 phosphorylation of the Cannabinoid Receptor 1 in mouse brain
pS425-CB1 (IHC-grade phospho-Cannabinoid...
Serine425 (S425) is major phosphorylation site of the Cannabinoid Receptor 1 (CB1). The pS425-CB1 antibody detects phosphorylation in response to agonists. S425 phosphorylation is likely to be involved in efficient ligand sequestration...
$ 500.00 *
NEW
Immunohistochemical Identification of Serine594/Threonine597/Serine599 phosphorylation of the SMO Receptor in primary cilia in the mouse neural tube
pS594/pT597/pS599-SMO (phospho-SMO Receptor...
Serine594/Threonine597/Serine599 (S362/S363/S364) is major GRK2 phosphorylation site of the SMO receptor. The pS594/pT597/pS599-SMO antibody detects phosphorylation in response to agonists. The pS594/pT597/pS599-SMO antibody can be used...
$ 500.00 *
NEW
Immunohistochemical Identification of Serine296/Serine297 phosphorylation of the FFA Receptor 2 in mouse white adipose tissue and peyer's patches.
pS296/pS297-FFA2 (IHC-grade phospho-FFA2 Antibody)
Serine296/Serine297 (S296/S297) is major phosphorylation site of the FFA Receptor 2 (FFA2). The pS296/pS297-FFA2 antibody detects constitutive phosphorylation of FFA2.
$ 500.00 *
NEW
Immunohistochemical Identification of Threonine306/Threonine310 phosphorylation of the FFA Receptor 2 in mouse neuroendocrine cells and peyer's patches.
pT306/pT310-FFA2 (IHC grade phospho-FFA2 Antibody)
Threonine306/Threonine310 (T306/T310) is major phosphorylation site of the FFA 2 Receptor (FFA2). The pT306/pT310-FFA2 antibody detects phosphorylation in response to agonists. T306/T310 phosphorylation is likely to be involved in...
$ 500.00 *
NEW
Immunohistochemical identification of Serine409/Serine410 phosphorylation of Neurotensin Receptor 1 in mouse brain.
pS409/pS410-NTS1 (IHC-grade phospho-Neurotensin...
Serine409/Serine410 (S409/S410) is major phosphorylation site of the Neurotensin Receptor 1 (NTS1). The pS409/pS410-NTS1 antibody detects phosphorylation in response to agonists. S409/S410 phosphorylation is likely to be involved in...
$ 500.00 *
NEW
Immunohistochemical identification of Dopamine Receptor 1 and Dopamine Receptor 2 in striatum
D2 (IHC-grade), Dopamine Receptor 2 Antibody
The D2 receptor antibody is directed against the third intracellular loop of mouse, rat and human D2 dopamine receptor. It detects both the long and short form of D2. It can be used to detect total D2 receptors in Western blots...
$ 375.00 *
1 From 27

For further reading refer to:

Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017 Jul;38(7):621-636. doi:10.1016/j.tips.2017.04.002. Epub 2017 May 4. Review. PubMed PMID: 28478994.

Miess E, Gondin AB, Yousuf A, Steinborn R, Mösslein N, Yang Y, Göldner M, Ruland JG, Bünemann M, Krasel C, Christie MJ, Halls ML, Schulz S, Canals M. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018 Jul 17;11(539). pii: eaas9609. doi: 10.1126/scisignal.aas9609. PubMed PMID: 30018083.

Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT, Levitt ES, Williams JT, Christie MJ, Schulz S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat Commun. 2019 Jan 21;10(1):367. doi: 10.1038/s41467-018-08162-1. PubMed PMID: 30664663; PubMed Central PMCID: PMC6341117.

Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal. 2019 Mar 26;12(574). pii: eaau8072. doi: 10.1126/scisignal.aau8072. PubMed PMID: 30914485; PubMed Central PMCID: PMC6934085.

Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S, Stumm R. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin. Cell Rep. 2019 Feb 5;26(6):1473-1488.e9. doi: 10.1016/j.celrep.2019.01.049. PubMed PMID: 30726732.

Glück L, Loktev A, Moulédous L, Mollereau C, Law PY, Schulz S. Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry. 2014 Nov 15;76(10):767-74. doi: 10.1016/j.biopsych.2014.01.021. Epub 2014 Feb 3. PubMed PMID: 24629717; PubMed Central PMCID: PMC4119866.

For further reading refer to: Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017 Jul;38(7):621-636.... read more »
Close window
Premium Phosphosite-Specific 7TM Antibodies

For further reading refer to:

Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017 Jul;38(7):621-636. doi:10.1016/j.tips.2017.04.002. Epub 2017 May 4. Review. PubMed PMID: 28478994.

Miess E, Gondin AB, Yousuf A, Steinborn R, Mösslein N, Yang Y, Göldner M, Ruland JG, Bünemann M, Krasel C, Christie MJ, Halls ML, Schulz S, Canals M. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018 Jul 17;11(539). pii: eaas9609. doi: 10.1126/scisignal.aas9609. PubMed PMID: 30018083.

Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT, Levitt ES, Williams JT, Christie MJ, Schulz S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat Commun. 2019 Jan 21;10(1):367. doi: 10.1038/s41467-018-08162-1. PubMed PMID: 30664663; PubMed Central PMCID: PMC6341117.

Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal. 2019 Mar 26;12(574). pii: eaau8072. doi: 10.1126/scisignal.aau8072. PubMed PMID: 30914485; PubMed Central PMCID: PMC6934085.

Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S, Stumm R. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin. Cell Rep. 2019 Feb 5;26(6):1473-1488.e9. doi: 10.1016/j.celrep.2019.01.049. PubMed PMID: 30726732.

Glück L, Loktev A, Moulédous L, Mollereau C, Law PY, Schulz S. Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry. 2014 Nov 15;76(10):767-74. doi: 10.1016/j.biopsych.2014.01.021. Epub 2014 Feb 3. PubMed PMID: 24629717; PubMed Central PMCID: PMC4119866.

Recently viewed